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ABSTRACT

Concept Factorization (CF), as a variant of Nonnegative
Matrix Factorization (NMF), has been widely used for learn-
ing compact representation for images because of its psycho-
logical and physiological interpretation of naturally occur-
ring data. And graph regularization has been incorporated
into the objective function of CF to exploit the intrinsic
low-dimensional manifold structure, leading to better per-
formance. But some shortcomings are shared by existing
CF methods. 1) The squared loss used to measure the data
reconstruction quality is sensitive to noise in image data. 2)
The graph regularization may lead to trivial solution and s-
cale transfer problems for CF such that the learned represen-
tation is meaningless. 3) Existing methods mostly ignore the
discriminative information in image data. In this paper, we
propose a novel method, called Robust and Discriminative
Concept Factorization (RDCF) for image representation.
Specifically, RDCF explicitly considers the influence of noise
by imposing a sparse error matrix, and exploits the discrim-
inative information by approximate orthogonal constraints
which can also lead to nontrivial solution. We propose an
iterative multiplicative updating rule for the optimization of
RDCF and prove the convergence. Experiments on 5 bench-
mark image datasets show that RDCF can significantly out-
perform several state-of-the-art related methods, which val-
idates the effectiveness of RDCF.
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1. INTRODUCTION
Because of the curse of dimensionality, applying statis-

tic techniques to image data which is always represented by
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high-dimensional vector becomes infeasible [8]. Thus learn-
ing low-dimensional compact representation lays the funda-
mental for many real-world applications, like pattern recog-
nition, computer vision and image processing, etc [7, 9, 12,
13, 21]. Among different methods, Nonnegative Matrix Fac-
torization (NMF) [16, 17] which aims to find two nonnega-
tive matrices as the basis and the corresponding coefficients
whose product can well approximate the original data, has
attracted considerable attention because it can learn parts-
based representation for images which has psychological and
physiological interpretation of naturally occurring data [19,
22]. And as a variant of NMF, Concept Factorization (CF)
[23], which aims to represent basis by the linear combination
of original data, has also shown promising performance for
data representation. In addition, previous works on mani-
fold learning [1] have been incorporated into CF as the graph
regularization to exploit the intrinsic low-dimensional man-
ifold structure embedding the high-dimensional data, which
leads to better visual analysis performance. One representa-
tive and effective work is Locality Consistent Concept Fac-
torization (LCCF) [2], which incorporates graph regulariza-
tion to the objective function of conventional CF to learn
locality consistent data feature.

In spite of its state-of-the-art performance, LCCF can
be further improved because it still suffers from the fol-
lowing three shortcomings. First, because of the squared
loss adopted in LCCF to measure the quality of data recon-
struction, it’s very unstable and sensitive to noise in data.
Thus the factorization may be dominated by the noise which
can degrade the quality of learned representation. Second,
the graph regularization may lead to trivial solution and s-
cale transfer problems because it’s actually not well-defined
and the objective function is not lower-bounded [10]. These
problems may result in meaningless representation for image
data. Thirdly, though it fully considers the local information
of data, it ignores the discriminative information of original
data, which is also important for visual analysis tasks like
clustering. Furthermore, some recent works claim that guar-
anteing sparseness of representation for NMF and CF can
produce much better performance [5, 14, 18]. But LCCF
always results in dense representation for image data.

To address theses issues, in this paper we propose a novel
method, referred to as Robust and Discriminative Concep-
t Factorization (RDCF) for image representation. We es-



Table 1: Comparison between Some Related Works

CF LNMF LCF LCCF RDCF

Feature Learning
√ √ √ √ √

Locality
√ √ √

Discriminability
√

Robustness
√ √

Trivial Solution
√ √ √ √

Sparseness ?
√ √

tablish our method based on LCCF such that RDCF has
the advantages of CF and can preserve locality naturally.
We utilize a sparse error matrix to explicitly capture noise
which has significant influence upon the data reconstruction.
Thus the factorization can capture more intrinsic informa-
tion from the cleaned data. And we propose to add approxi-
mate orthogonal constraints to the objective function. With
the constraints, RDCF can 1) exploit the discriminative in-
formation of data which leads to better representation; 2)
avoid trivial solution and scale transfer problems even with
strong graph regularization; 3) learn relatively sparse repre-
sentation for image. Our RDCF is strongly related to but
different from several previous works. In table 1, we com-
pare RDCF to several related methods, CF[23] (NMF [16]),
LNMF [15], LCCF [2] (GNMF [3]), LCF [18] (NLCF [5]),
and NSDR [24]. RDCF can simultaneously perform fea-
ture learning, dimension reduction, locality preserving, and
discriminative information exploiting. And It’s robust to
data noise and can avoid trivial solution and scale trans-
fer problems even with graph regularization. The proper-
ties mentioned above are all important to achieve superi-
or performance, but previous works always ignores some of
them. Furthermore, RCDF can result in sparse representa-
tion, which is also very meaningful for image representation.
In summary, this paper makes contributions as below,

• We propose a novel method RDCF for image repre-
sentation. RDCF is robust to data noise, can avoid
trivial solution and scale transfer problem and exploit
the discriminative information of data, which are the
major problems LCCF suffers from. Actually, RDCF
satisfies several important properties for image feature
learning while previous methods ignore some of them.

• We propose an effective and efficient iterative strategy
with multiplicative updating rules for the optimization
for RDCF, and we theoretically prove the convergence.

• We carried out extensive experiments on five public
image datasets. The experimental results show that
RDCF can significantly outperform several state-of-
the-art methods, validating the effectiveness of RDCF.

The rest of this paper is organized as follows. Some re-
lated works are briefly reviewed in Section 2. We will in-
troduce the proposed RDCF in detail in Section 3 and the
corresponding theoretical analysis is given in Section 4. The
experimental results on benchmark datasets are presented
in Section 5. In the end, conclusions are made in Section 6.

2. RELATED WORK

2.1 Preliminaries
Given a set of nonnegative image data represented as

X = [x1, ...,xn] ∈ R
d×n, where n is the number of sam-

ples and d is the number of feature dimension. CF aims to

Table 2: Notations and descriptions in this paper
Notation Description Notation Description

X input data matrix n #images

W basis coefficients d #dimension

V new representation k #basis vectors

L graph Lap. matrix p #NN

S sparse error matrix λ sparse para.

K, K̂ kernel matrix α graph para.

F scaled indi. matrix β orth. para.

find two nonnegative matrices W ∈ R
n×k and V ∈ R

n×k

where k is the dimension of the new representation, such
that the original data can be well approximate. The objec-
tive function of the conventional CF can be written as

OCF = ‖X−XWVT ‖2F s.t. W,V ≥ 0 (1)

where ‖ · ‖F is the Frobenius norm of matrix. Generally,
Eq. (1) can be optimized by an iterative strategy with mul-
tiplicative updating rules for W and V as suggested in [23],

wjl ← wjl

(KV)jl

(KWVTV)jl
, vjl ← vjl

(KW)jl

(VWTKW)jl
(2)

where K = XTX is the kernel matrix. We can first define a
p-nearest neighbor matrix G whose elements are as follows

Gij =

{
1, if xi ∈ N (xj) or xj ∈ N (xi)
0, otherwise

(3)

where N (xi) denotes the p-nearest neighbor of xi. Now we
can further define the graph Laplacian L = D−G, where D
is the diagonal degree matrix whose diagonal element Dii =∑n

j=1Gij . By incorporating this graph regularization, we
can obtain the objective function of LCCF as below

OLCCF = ‖X−XWVT ‖2F + αtr(VTLV)

s.t. W,V ≥ 0
(4)

where α is the graph regularization parameter. The local
information can’t be fully exploited with a small value for
α. However, if α is too large, the graph regularization may
dominate the objective function and Eq. (4) reduces to

O′

LCCF = tr(VTLV) =
k∑

i=1

vT
∗iLv∗i (5)

where v∗i is the i-th column of V. Actually Eq. (5) can
be optimized as k independent subproblems Oi = vT

∗iLv∗i,
leading to the same solutions up to a scale, i.e., v∗1 ∝ v∗2 ∝
... ∝ v∗k. In fact, the learned representations are meaning-
less, e.g., the cosine similarity between any images is 1. And
this is the so-called trivial solution problem in [10].

Furthermore, because the graph regularization isn’t well-
defined and lower-bounded, suppose we obtain any solution
(W∗,V∗) to Eq. (4). Given ∀γ > 1, it’s easy to verify that
(γW∗, 1

γ
V∗) can lead to smaller objective function value.

Consequently the ultimate solution will be W∗ → ∞ and
V∗ → 0, which is referred to as the scale transfer problem.

2.2 Other Work
Recent years, some works have made some effort to ad-

dress some problems mentioned in Section 1. Though they
are actually for NMF, we find they can be applied to CF too.
In LNMF [15], ℓ2,1 norm is utilized to measure the quality
of reconstruction, which is more robust than squared loss.



In DRCC [11], they use ℓ2 normalization in each optimiza-
tion iteration. In NSDR [24], discriminative information is
exploited in the clustering. Here we need to point out that
NSDR is a spectral clustering method, but not a feature
learning method as others. Hence its applications are limit-
ed. In LCF [18], they require the basis to be close to original
data points such that V can be sparse, which is motivated
by Local Coordinate Coding [27]. Though the trivial solu-
tion and scale transfer problems are avoided in LCF and the
locality is preserved, LCF still suffers from the other two
main shortcomings of LCCF such thut its best performance
is just comparable to LCCF’s. In summary, these methods
focus on some perspectives for designing effective NMF or
CF, but they ignore some others. Motivated by them, we
propose a unified method taking all the perspectives into
consideration, which will lead to much better performance.

3. THE PROPOSED METHOD

3.1 Objective Function
In spite of the trivial solution and scale transfer problem,

graph regularization is still a powerful and effective tool to
preserve the locality of image data. Thus we establish our
RDCF upon LCCF. Actually, in RDCF, the trivial solution
and the scale transfer problems can be effectively addressed.

The first step is to address the problem that squared loss
widely utilized in CF is sensitive to noise in data. Two al-
ternatives are available. Using other loss function instead
of squared loss as in LNMF, or remove noise from data. In
this paper, we choose the latter. Motivated by Robust P-
CA [4], a data matrix can be M can be decomposed as the
sum of a low-rank component L and a sparse component
S, i.e., M = L + S. Actually, we can observe that the term
XWVT is essentially low-rank. But in CF and LCCF, the
sparse component that is always noise is ignored but it in-
deed has considerable effect. In fact, the sparse component,
i.e., noise, often dominates the factorization leading to un-
satisfactory representation for data. Thus, we can impose a
sparse component into the factorization to capture the noise
such that the factorization can capture more intrinsic infor-
mation from the cleaned data. By incorporating this idea
into LCCF, we can obtain the objective function as follows,

O1 =‖X− S−XWVT ‖2F + λ‖S‖1
+ αtr(VTLV) s.t. W,V ≥ 0

(6)

where ‖S‖1 =
∑

ij
|Sij | is the ℓ1 norm of matrix, which

can guarantee the sparseness of the matrix. By imposing
this sparse error matrix, the influence of noise is removed
and a cleaned data matrix X− S can be constructed thus
the reconstruction can capture more intrinsic information.
Consequently our model is robust to the noise in image data.

Then we need to make the learned representation V dis-
criminative, i.e., capture some discriminative information of
data. Here we follow the works in [25] and [26]. First we
introduce a group indicator matrix Y = {0, 1}n×k where
Yij = 1 if the i-th image belongs to the j-th group. The s-
caled indicator matrix with respect to Y is defined as below

F = Y(YTY)−
1

2 (7)

where each column in F, i.e., each image group, is given by

F∗j = [0, ..., 0, 1, ..., 1
︸ ︷︷ ︸

nj

, 0, ...0]T /
√
nj (8)

where nj is the number of samples in the j-th group. We
want the learned representation V to characterize the dis-
criminative structure in F. Intuitively, we just need to force
them to be close to each other, i.e., ‖V − F‖2F ≤ ǫ, where ǫ
is a small constant. Now we can incorporate this constraint
on V to the objective function defined in Eq. (6) as follows

O2 = ‖X− S−XWVT ‖2F + λ‖S‖1
+ αtr(VTLV) s.t. W,V ≥ 0, ‖V − F‖2F ≤ ǫ

(9)

Unfortunately, it’s impossible to know F in prior because we
have no label information under unsupervised scenario. But
in Eq. (7), we can observe that F is strictly orthogonal

FTF = (YTY)−
1

2YTY(YTY)−
1

2 = Ik (10)

where Ik is a k × k identity matrix. Look back to Eq. (9),
if we set ǫ = 0, then V is strictly equal to F. Consequent-
ly V should be orthogonal too. However, this constraints
may be too heave. Actually, given a small ǫ, the learned
V is close but not totally equal to F. Thus V isn’t strictly
but approximately orthogonal, which can be formulated as
‖VTV − Ik‖2F ≤ ǫ. By substituting the term containing F
in Eq. (9) with the approximate orthogonal constraints as
above, now we can obtain the objective function as follows,

O3 = ‖X − S−XWVT ‖2F + αtr(VTLV)

+ λ‖S‖1 s.t. W,V ≥ 0, ‖VTV − Ik‖2F ≤ ǫ
(11)

Further we can rewrite Eq. (11) for optimization issues, and
obtain the overall objective function of our RDCF as below,

O =‖X− S−XWVT ‖2F + αtr(VTLV)

+ λ‖S‖1 + β‖VTV − Ik‖2F s.t. W,V ≥ 0
(12)

where β is the regularization parameter for approximate or-
thogonal constraints. In fact, given any ǫ, a large enough β
can make RDCF satisfy the constraint ‖VTV − Ik‖2F ≤ ǫ.

Besides capture the discriminative information in data,
the approximate orthogonal constraints can also address the
trivial solution and scale transfer problems. In fact, given a
large β, i.e., β = 10000, only few elements in each row of V
may have significantly large value because V is nonnegative
and approximately orthogonal, and each column of V tends
to be as different as possible to each other. Thus, even with
heavy graph regularization, the solution to Eq. (12) can
be nontrivial. Furthermore, if we substitute V∗ by 1

γ
V∗

(γ > 1), the term β‖VTV − Ik‖2F may have larger value
leading to larger objective function value with a large β.
Consequently the scale transfer problem can be avoided. In
addition, a proper β also results in sparse V for images. As
mentioned in [5, 14, 18], the sparse representations can lead
to better performance for visual analysis as clustering.

3.2 Optimization Algorithm
The objective function in Eq. (12) is non-convex with

W,V and S together. But fortunately, it’s convex with
respect to any one of them while fixing the others. So we
can adopt an iterative strategy for optimizing Eq. (12).



3.2.1 Update U and V

For the convenience for derivation, firstly we can make the
following denotations, X̂ = X− S, K = XTX, and K̂ =
X̂TX. By applying the properties of matrix norm ‖A‖2F =
tr(ATA), tr(AB) = tr(BA) and tr(A) = tr(AT ), we can
obtain the objective function from Eq. (12) as follows,

O = tr(VWTKWVT )− 2tr(K̂WVT ) + λ‖S‖1
+ αtr(VTLV) + βtr(VTVVTV)

− 2βtr(VTV) + β + tr(X̂T X̂) s.t. W,V ≥ 0

(13)

Now let ψjl and φjl be the Lagrange multiplier for con-
straints wjl ≥ 0 and vjl ≥ 0 respectively, and denote Ψ =
[ψjl] and Φ = [φjl]. Then we can write the Lagrange

L = O + tr(ΨWT ) + tr(ΦVT ) (14)

The partial derivatives of L with respect to W and V are
as

∂L
∂W

= 2KWVTV − 2K̂V +Ψ (15)

∂L
∂V

=2VWTKW − 2K̂W+ 2αLV

+ 4βVVTV − 4βV +Φ

(16)

By using the Karush-Kuhn-Tucker conditions, i.e., ψjlwjl =
0 and φjlvjl = 0, we get the following equations,

(KWVTV)jlwjl − (K̂V)jlwjl = 0 (17)

(VWTKW)jlvjl − (K̂W)jlvjl + α(LV)jlvjl

+ 2β(VVTV)jlvjl − 2β(V)jlvjl = 0
(18)

Then we obtain the following multiplicative updating rules:

wjl ← wjl
(K̂V)jl

(KWVTV)jl
(19)

vjl ← vjl
(K̂W + αGV + 2βV)jl

(VWTKW + αDV+ 2βVVTV)jl
(20)

3.2.2 Update S

We can observe that the optimization problem with re-
spect to S is element-wise decoupled, i.e., we can optimize
every element independently. Denote E = X−XWVT =
[eij ]. Then each subproblem with respect to sij can be writ-
ten as,

Oij = (eij − sij)2 + λ|sij | (21)

After some simple derivation, we could obtain the solution
to Eq. (21) as follows, which is also the updating rule for S

sij =

{
0, if |eij | ≤ λ

2

eij − λ
2
sign(eij), otherwise

(22)

In addition, by substituting Eq. (22) into Eq. (21), we have

Oij =

{
e2ij , if |eij | ≤ λ

2

λ|eij | − (λ
2
)2, otherwise

(23)

This is an interesting and important result. Intuitively, the
large reconstruction error is often caused by data noise. If
ℓ2 norm (squared loss) is applied to all entries, the factoriza-
tion will be dominated by the large-error entries, i.e., noise

data. But from Eq. (23), we can observe that the factoriza-
tion is self-adaptive to the reconstruction error. With the
presence of S, the factorization uses ℓ1 norm as measure for
large-error entries to alleviate the influence of noise, while
ℓ2 norm is applied to small error entries for more accurate
factorization to capture the intrinsic information. Thus the
factorization in RDCF can be robust to noise in image data.

4. THEORETICAL ANALYSIS

4.1 Proof of Convergence
We can use Eq. (19), Eq. (20) and Eq. (22) iteratively to

update W, V and S respectively, and the value of objective
function in Eq. (12) will finally converge to a local minimum,
which is theoretically guaranteed by Theorem 1.

Theorem 1. Objective function O in Eq. (12) is nonin-
creasing under rules in Eq. (19), Eq. (20) and Eq. (22).

In fact, it’s obvious that Oij reaches the minimum when sij
is computed as Eq. (22). Thus O is definitely nonincreasing
under the updating rule for S in Eq. (22). Now we need
to prove that O is nonincreasing under Eq. (19) and Eq.
(20). Because of the limitation of space, we just show the
the proof with respect to Eq. (20). Actually, the proof with
respect to Eq. (19) is analogous. Our proof takes advantage
of the auxiliary function [6] which can be defined as follows

Definition 1. G(v, v′) is an auxiliary function for F (v)
if

G(v, v′) ≥ F (v), G(v, v) = F (v) (24)

are satisfied.

Then we need to make use of an important lemma as below,

Lemma 1. If G(v, v′) is an auxiliary function of F (v),
then F (v) is nonincreasing under the following updating rule

v(t+1) = argmin
v
G(v, v(t)) (25)

Proof (proof of Lemma 1).

F (v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F (v(t))

Now we need to show the updating rule for V in Eq. (20)
is exactly the update in Eq. (25) with a proper auxiliary
function. Let Fab denote the the part of O that is only
relevant to vab. The second-order partial derivative of Fab

is as follows

F
′′

ab =2(WTKW)bb + 2αLaa − 4βIabab

+ 4β(IabVTV +VIab
T

V +VVT Iab)ab
(26)

where Iab is a n × k matrix with 1 at (a, b) and 0 at all
others. It’s easy to validate the following three inequalities,

(VWTKW)ab ≥ v(t)ab (W
TKW)bb (27)

(DV)ab =
n∑

i=1

Dajv
(t)
jb ≥ (D−W)aav

(t)
ab (28)

(VVTV)ab =

n∑

j=1

k∑

i=1

vaivjivjb

≥ (IabVTV +VIab
T

V +VVT Iab − 1)abvab

(29)



Table 3: Description of benchmark datasets
Dataset #Example #Features #Classes

ORL 400 1024 40
YALE 165 1024 15
UMIST 398 644 20
MNIST 1000 784 10
Semeion 1593 256 10

Here we need to point out that the inequality in (29) does not
mathematically and strictly hold. In fact, during the deriva-
tion of it, we need to prove that

∑n

j 6=a

∑k

i6=b vaivjivjb ≥
2v3ab − vab. In fact, just by setting V = Iab, this inequality
is wrong. However, in real application, this inequality is al-
ways true because of the following two reasons. First, if the
right part of the equality is nonpositive, e.g., vab ∈ [0, 1√

2
],

the left part which is nonnegative is definitely greater than
the nonpositive right part. In fact, if V can capture the
structure of F, the largest element in V is close to 1√

nj

where nj ≫ 2 in real world. Thus the right part is always
nonpositive. And this can be guaranteed by setting a large
value for β. Second, even though the right part is positive,
we can observe that the left part contains (n − 1)(k − 1)
terms, whose sum is always very large. Thus we can expect
the sum of these terms could generate a larger value than
the right part.

Lemma 2. The function

G(v, v
(t)
ab ) = Fab(v

(t)
ab ) + F

′

ab(v
(t)
ab )(v − v

(t)
ab )

+
(VWTKW + αDV + 2βVVTV)ab

v
(t)
ab

(v − v(t)ab )
2

(30)

is an auxiliary function for Fab(v).

Proof (proof to Lemma 2). It’s obvious thatG(v, v) =

Fab(v). Now we need to show G(v, v
(t)
ab ) ≥ Fab(v). Here we

compare the Taylor series expansion of Fab(v) at v
(t)
ab as

Fab(v) =Fab(v
(t)
ab ) + F

′

ab(v
(t)
ab )(v − v

(t)
ab )

+
1

2
F

′′

ab(v
(t)
ab )(v − v

(t)
ab )

2
(31)

Based on the definition in Eq. (26) and Eq. (30), and three
important inequalities mentioned in Eq. (27), Eq. (28)

and Eq. (29), it’s very easy to validate that G(v, v
(t)
ab ) ≥

Fab(v).

Proof (proof of Theorem 1). We can replaceG(v, v
(t)
ab )

in Eq. (25) by Eq. (30), which result in the following rule,

v
(t+1)
ab =v

(t)
ab − v

(t)
ab

F
′

ab(v
(t)
ab )

2(VWTKW+ αDV + 2βVVTV)ab

= v
(t)
ab

(K̂W+ αGV + 2βV)ab

(VWTKW + αDV + 2βVVTV)ab
(32)

which is identical to Eq. (20). Because G(v, v
(t)
ab ) is an auxil-

iary function of Fab, Fab is nonincreasing under this updat-
ing rule. Therefore O is nonincreasing under Eq. (20).

4.2 Complexity Analysis
The time complexity for p-nearest graph construction is
O(n2d). In each iteration, the complexity for updating is

O(n2d + n2k). Suppose the optimization terminate at iter-
ation t, thus the overall complexity is O(n2((t+ 1)d+ tk)),
which is linear to n2. Consequently RDCF, LCCF and LCF
will have similar computational complexity with a large n.

5. EXPERIMENT AND DISCUSSION

5.1 Datasets, Metrics and Baseline Methods
To demonstrate the effectiveness of RDCF for image rep-

resentation, we carried out extensive experiment on five pub-
lic image dataset, ORL1, YALE2, UMIST3, MNIST4 and
Semeion5. The details of them are presented in Table 3.

Following previous works [3, 5, 18], we utilize clustering
performance to evaluate the effectiveness of image represen-
tation. And Clustering Accuracy (ACC) and Normalized
Mutual Information (NMI) are adopted as the evaluation
metrics for clustering, whose definitions are as follows

ACC =

∑n

i=1 δ(si,map(ri))

n
(33)

NMI(C,C′) =
MI(C,C′)

√
H(C)H(C′)

(34)

δ(x, y) is the indicator function that equals one if x = y and
zero otherwise. map(ri) is the permutation mapping func-
tion that maps each cluster label ri to the equivalent label
from the data corpus. And the best mapping can be found
by the Kuhn-Munkres algorithm [20]. H(C) and H(C′) are
the entropies of C and C′ respectively. And MI(C,C′) is the
mutual information between C and C′ defined as below

MI(C,C′) =
∑

ci∈C,c
′

j
∈C′

p(ci, c
′

j) · log2
p(ci, c

′

j)

p(ci) · p(c′j)
(35)

where p(ci) and p(c
′

j) represents the probabilities that an
image arbitrarily selected from the data corpus belongs to

clusters ci and c
′

j respectively. Analogously, p(ci, c
′

j) stands
for the joint probability that the any arbitrarily selected

image belongs to the clusters ci and c
′

j at the same time.
We compare RDCF to the following NMF and CF meth-

ods. Kmeans is chosen as the base algorithm. Then are NM-
F [16], CF [23] and LNMF [15]. Graph regularized methods,
GNMF [3] and LCCF [2]. NLCF [5] and LCF [18] based
on Local Coordinate Coding. We also compare RDCF to
NSDR [24] which is a spectral clustering method taking dis-
criminative information into consideration. For all baseline
methods above except NSDR, the cluster label can be gen-
erated from V in two ways. One is applying Kmeans to the
learned representation and the other is setting the cluster la-
bel of image i as c = argmaxjvij . Both ways are applied and
the best performance of each baseline method is presented.
And RDCF just utilizes the latter one.

5.2 Implementation Details
There are several important tunable parameters for base-

line methods. For meaningful comparison, we perform grid

1http://www.cl.cam.ac.uk/research/dtg/attarchive
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://www.sheffield.ac.uk/eee/research/iel/research/face
4http://yann.lecun.com/exdb/mnist/
5https://archive.ics.uci.edu/ml/datasets



Table 4: Clustering Accuracy (%)
Dataset Kmeans NMF LNMF GNMF NLCF NSDR CF LCF LCCF RDCF

ORL 41.00 52.75 52.50 54.50 53.75 57.75 53.25 54.00 53.50 63.00
YALE 32.73 35.15 36.15 39.39 41.21 39.39 36.00 40.14 39.15 47.23
UMIST 46.48 46.23 47.34 56.28 53.37 64.08 47.11 54.13 56.28 68.59
MNIST 47.50 47.90 47.10 50.70 48.70 55.80 47.40 51.00 52.00 63.50
Semeion 55.56 45.49 46.42 58.43 56.41 63.34 45.21 57.21 55.49 73.57

Average 44.65 45.50 45.90 51.86 50.69 56.07 45.79 51.30 51.29 63.19

Table 5: Normalized Mutual Information (%)
Dataset Kmeans NMF LNMF GNMF NLCF NSDR CF LCF LCCF RDCF

ORL 67.01 74.76 73.85 75.81 74.90 75.78 75.04 75.22 76.36 80.67
YALE 40.32 44.97 44.84 46.37 48.80 48.29 44.82 47.17 46.58 53.43
UMIST 63.81 64.74 65.16 75.85 72.13 76.03 65.02 74.31 76.18 82.37
MNIST 47.16 44.93 44.84 48.19 50.09 58.11 44.61 51.05 54.02 65.17
Semeion 50.94 41.04 42.27 55.88 54.21 61.90 41.84 53.57 51.60 65.87

Average 53.85 54.09 54.19 60.42 60.03 64.02 54.27 60.26 60.95 69.50

(a) Similarity of LCCF (b) Similarity of RDCF

Figure 1: Similarity between Images

search in the parameter space for each method and the
best results are reported. Specifically, we search p, the
number of nearest neighbors for constructing NN-graph, in
{1, 2, ..., 9}. And the graph regularization parameter α for
GNMF and LCCF is chosen from {0.1, 0.5, 1, 5, ..., 105}. The
regularization parameter for NLCF and LCF is selected from
{10−2, ..., 104}. And for all factorization-based methods in-
cluding RDCF, we set k, the dimension of latent space, to
the number of true classes of dataset, as in [3, 18].

There are also some important parameters for RDCF, i.e.,
p for constructing nearest neighbor graph, λ for noise regu-
larization, α for graph regularization and β for approximate
orthogonal constraints. Specifically, we set λ = 2max(medianij(eij),meanij(eij)).
Therefore it can be self-adaptive to the dataset and can
change automatically in each iteration. And we set p = 5
for MNIST and p = 3 for the others. We set α = 1, 000 for
UMIST and Semeion and α = 500 for the others. And we
set β = 1, 000 for all datasets. Actually, compared to LCCF
and LCF, RDCF is more robust to parameter change. In the
coming section, we conduct empirical analysis on parameter
sensitivity, and the results show that RDCF can achieve su-
perior and stable performance under a wide range of value
for both α and β.

5.3 Clustering Performance
The clustering results of all methods on five datasets mea-

sured by ACC and NMI are shown in Table 4 and Table 5
respectively. We can observe that RDCF can significant-
ly outperform all baseline methods regardless of datasets
because RDCF are robust to data noise and can preserve

(a) LCCF (b) RDCF

Figure 2: Basis Images

locality and exploit discriminative information simultane-
ously. Besides validating the effectiveness and superiority of
RDCF, the experiment also reveals some important points.

First, NMF and CF can outperform Kmeans though s-
lightly. This phenomenon verifies the effectiveness of NMF
and CF as feature learning methods, as discussed in [2, 3].

Second, we can observe that methods considering the local
geometry structure of data, such as GNMF, LCCF, LCF
and RDCF, significantly outperform NMF and CF, which
also validates the importance of preserving locality of data.

Third, among all methods, NSDR and RDCF are the only
two methods which explicitly exploit the discriminative in-
formation of data. And they are also the best two methods
highlighting the power of discriminative information. But
NSDR is affected by the noise and outlier in data, thus sig-
nificantly degrading the performance compared with RDCF.

At last, RDCF is the only method satisfying all the fol-
lowing properties, i.e., being robust to data noise, preserving
locality, exploiting discriminative information. Therefore it
can achieve the best performance. Actually, satisfying any
one of these properties can lead to better performance, and
combining them all can fully exploit their power and they
can as well promote each other for superior result.

Now we directly compare RDCF to LCCF on ORL dataset.
The cosine similarity between images represented by the
learned features (i.e., V) is shown in Figure 1, where brighter
color indicates larger similarity. We can observe RDCF
achieves large inter-class similarity and small inter-class sim-
ilarity, which is an ideal result, while LCCF achieves large
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Figure 3: Parameter Sensitivity Analysis
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Figure 4: Sparseness Comparison.

inter and intra class similarity simultaneously. In addition,
we show 25 basis images learned by LCCF and RDCF in
Figure 2. Obviously, RDCF can capture more intrinsically
discriminative information in images, while the basis learned
by LCCF are almost indistinguishable. Although the rep-
resentation learned by LCCF may achieve state-of-the-art
performance for image clustering, this representation can’t
capture the discriminative information in image data, and
is actually meaningless to some extent. But our RDCF is
able to overcome the shortcomings of LCCF. RDCF can
not only achieve much better clustering performance than
state-of-the-art methods, but also learn discriminative and
meaningful representation for images. Hence RDCF is more
practical in real-world scenarios than LCCF.

5.4 Parameter Sensitivity Analysis
We further conduct empirical analysis on parameter sen-

sitivity on all datasets. The results are shown in Figure 3.
The dashed lines are the best results of all baseline methods.

The performance of RDCF with respect to p is shown in
Figure 3(a). p controls the complexity of the graph. If it’s
too small, the graph may be too simple to fully exploit the
local information. If it’s too large, two images with differ-
ent label may be connected such that decrease the quali-
ty of graph. Both will degrade the performance of graph-
regularized methods, like GNMF, LCCF and RDCF. RDCF
outperforms best baselines on each dataset when p ∈ [2, 7].

The influence of α is shown in Figure 3(b). α controls
the weight of graph regularization. A small α will lead to
weak regularization thus it can’t affect the objective function
such that the locality can’t be preserved. While a too large
α may cause trivial solution problem to graph-regularized
methods, like GNMF and LCCF. Though RDCF has graph
regularization, we also incorporate approximate orthogonal
constraints such that the trivial solution problem can be
effectively avoided. Thus RDCF can achieve superior per-

formance even with a large α. In fact, GNMF and LCCF
are sensitive to α to some extent. But RDCF can achieve
superior and stable performance under a very wide range of
parameter value, i.e., α ∈ [10, 105] and it markedly outper-
forms all baselines on all datasets when α ∈ [102, 5× 104].

We plot the performance of RDCF with respect to differ-
ent values of β in Figure 3(c). The parameter β controls the
orthogonality of learned representations. Theoretically, if β
is too small, the orthogonal constraint will be too weak and
RDCF will be ill-defined and prone to trivial solution like
GNMF and LCCF. On the contrary, if β is too large, the con-
straint may dominate the objective function of RDCF and
it’s so heave that the learned representation can be extreme-
ly sparse (under the ultimate situation, i.e., β =∞, there is
only one non-zero element in each row of V) which is also
unexpected in real-world scenarios. Fortunately, we can ob-
serve from the results that RDCF consistently outperforms
best baseline methods on five datasets when β ∈ [102, 104].

5.5 Other Issues
Previous works [5, 14, 18] mentioned that sparseness is

also an important property of good image representation.
Here we compare the sparseness of V learned by CF, LCCF
and RDCF. As in [5], the sparseness is measured as follows,

SP(V) =
1

n

n∑

i=1

√
k − (

∑k

j=1 |vij |/
√

∑k

j=1 v
2
ij)√

k − 1
(36)

where SP ∈ [0, 1] and larger value indicates more sparse
representation. The sparseness of them on five datasets are
shown in Figure 4. We can observe that RDCF can indeed
learn sparse representation while LCCF always learns dense
one, and the sparseness of CF depends on datasets. Actual-
ly, larger β can result in more sparse representation. But this
is unexpected in real world. With a proper β, the sparseness
is about 90%, which leads to effective image representation.

It has been proven theoretically in Section 4 that the ob-
jective function will converge under the proposed multiplica-
tive updating rules. Now we want to show how fast it can
converge. The objective function value (averaged by the
number of samples) with respect to the number of iterations
is shown in Figure 5(b). We can observe that the objective
function value is decreasing steadily with more iterations
and can converge very fast, usually within 100 iterations. In
addition, we compare the convergency property of RDCF to
conventional CF whose result is shown in Figure 5(a). We
can see RDCF can converge faster and more stablely than
CF which requires more than 200 iterations to convergency.
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Figure 5: Convergency Study

6. CONCLUSION
In this paper, we propose a novel method called RDCF,

which can simultaneously preserve local geometry structure
and exploit discriminative information. It’s also robust to
data noise while previous works with squared loss can’t ad-
dress this problem. Furthermore, RDCF can avoid trivial
solution and scale transfer problems even with graph reg-
ularization. All properties above make RDCF an effective
method for image representation. We also propose an it-
erative strategy with multiplicative updating rules for the
optimization of RDCF and prove the convergence theoreti-
cally. Extensive experiments on five public image dataset-
s are carried out and the results demonstrate that RDCF
can significantly outperform several state-of-the-art relat-
ed methods. Analysis about parameter sensitivity validates
that RDCF can achieve superior and stable performance un-
der wide range of parameter values, even if it’s regularized
by graph.
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